

SUJETS DE COLLES 02

1. Questions de cours.

- Qu'appelle-t-on l'espace vectoriel des matrices à n lignes et p colonnes (ensemble et lois).
- Prouver qu'un sous-espace vectoriel contient toujours le vecteur nul.
- Qu'est-ce qu'une famille libre?
- Montrer que Vect $\{e_1, \dots, e_p\}$ est un sous-espace vectoriel.
- Qu'est-ce qu'une famille liée?
- Soit (e_1, \dots, e_n) une base d'un espace vectoriel E et soit $u \in E$. Montrer qu'il existe un unique n-uplet $\lambda_1, \dots, \lambda_n$ de réels tels que

$$u = \lambda_1 e_1 + \dots + \lambda_n e_n.$$

- Donner sans preuves toutes les caractéristiques de la loi binomiale.
- Donner sans preuves toutes les caractéristiques de la loi de Poisson.
- Donner sans preuves toutes les caractéristiques de la loi de géométrique.

2. Exercices classiques (algèbre linéaire).

EXERCICE 1 1. Montrer que, dans $\mathbb{R}_2[X]$, le polynôme $X^2 + 1$ est combinaison linéaire de 1, X - 1 et $(X - 1)^2$.

2. Montrer que l'ensemble ${\mathcal E}$ défini par

$$\mathcal{E} = \left\{ \begin{pmatrix} a & -a \\ 0 & a+b \end{pmatrix} : (a,b) \in \mathbb{R}^2 \right\}$$

est un espace vectoriel. Quelle est sa dimension?

EXERCICE 2

Résoudre le système suivant et présenter le résultat sous forme de Vect():

$$\begin{cases} 5x + 2y - z & = & 0 \\ 2x + 2y + 2z & = & 0 \\ -x + 2y + 5z & = & 0 \end{cases}$$

EXERCICE 3

Montrer que les ensembles suivants sont des espaces vectoriels, en déterminer une base et leur dimension :

1.
$$F_1 = \{(2x - 3y, 2y - 3x, 2x), \forall (x, y) \in \mathbb{R}^2 \}.$$

2. l'ensemble F_2 des matrices de $\mathcal{M}_3(\mathbb{R})$ qui s'écrivent sous la forme $\begin{pmatrix} a-2b+c & b & c \\ b & a-2b+c & -c \\ c & -c & a-2b+c \end{pmatrix}$ avec a,b,c réels.

EXERCICE 4

Soit $E = \mathbb{R}_3[X]$. On considère F l'ensemble des polynômes $P \in E$ tels que P(2) = 0 et P'(1) = 0.

1

2

- 1. Montrer que F est un sous-ev de E.
- **2.** Soit $P = ax^3 + bx^2 + cx + d \in E$. Donner deux équations sur les réels a, b, c, d pour que $P \in F$.
- **3.** En déduire une famille génératrice de F.
- **4.** Cette famille est-elle une base de F? Déterminer $\dim(F)$.

3. Exercices classiques (probas).

EXERCICE 5

Soit X une variable aléatoire suivant la loi géométrique de paramètre p. La variable X a-t-elle plus de chances de prendre une valeur paire ou impaire?

EXERCICE 6

On effectue des tirages sans remise d'une boule dans une urne contenant n-1 boules blanches et une boule noire. On note X le rang d'apparition de la boule noire. Montrer que X suit la loi uniforme $\mathcal{U}[1, n]$.

EXERCICE 7

On note X une variable aléatoire qui suit la loi de Poisson de paramètre λ . On suppose que sachant [X=n] une variable aléatoire Y suit une loi binomiale $\mathcal{B}(n,p)$. Montrer que Y suit la loi de Poisson de paramètre $p\lambda$.

4. Exercices plus difficiles.

EXERCICE 8

On note $E = \mathbb{R}_4[X]$. On dit qu'un polynôme P est pair (resp. impair) s'il définit une fonction paire de R dans R, c'est-à-dire si, pour tout $x \in \mathbb{R}$,

$$P(-x) = P(x)$$
 resp. $P(-x) = -P(x)$.

Par ailleurs, lorsque F et G sont deux sous-espaces vectoriels de E, on note

$$F + G = \{u + v \mid u \in F \text{ et } v \in G\}.$$

On note F l'ensemble des polynômes pairs de E et G l'ensemble des polynômes impairs. Montrer que F et G sont des sous-espaces vectoriels de E, puis que

$$F \cap G = \{0\}$$
 et $E = F + G$.

EXERCICE 9

On note \mathcal{C} l'espace vectoriel des fonctions continues sur \mathbb{R} . Pour tout $n \in \mathbb{N}$, fabriquer une famille libre de \mathcal{C} à n éléments. En déduire que \mathcal{C} n'est pas de dimension finie.

Avec un raisonnement analogue, on peut aussi montrer que l'espace des suites réelles ou l'espace $\mathbb{R}[X]$ ne sont pas de dimension finie eux non plus.

EXERCICE 10 1. Montrer que la famille

$$(X^n, X^{n-1}(1-X), X^{n-2}(1-X)^2, \cdots, X(1-X)^{n-1}, (1-X)^n)$$

est une base de $\mathbb{R}_n[X]$.

2. Trouver les coordonnées de 1 et $\left(X - \frac{1}{2}\right)^n$ dans cette base.

EXERCICE 11

1. Théorème de la base incomplète.

Soit E un espace vectoriel et (e_1, \dots, e_p) une famille libre de E.

- **a.** Montrer que si (e_1, \dots, e_p) n'est pas génératrice de E, alors il existe un vecteur f tel que la famille (e_1, \dots, e_p, f) soit encore libre.
- **b.** On suppose que E est de dimension n. Montrer qu'on peut compléter la famille libre (e_1, \dots, e_p) en une base $(e_1, \dots, e_p, f_1, \dots, f_{n-p})$ de E.

2. Une application.

Soit E un espace vectoriel, F et G deux sous-espaces vectoriels de E. On cherche à établir la formule suivante

$$\dim(F+G) = \dim(F) + \dim(G) - \dim(F \cap G),$$

où F+G est le sous-espace vectoriel défini par

$$F + G = \{u + v; u \in F \text{ et } v \in G\}.$$

On note (e_1, \dots, e_p) une base de $F \cap G$.

- **a.** Montrer qu'il existe une base de F de la forme $(e_1, \dots, e_p, f_1, \dots, f_q)$ et une base de G de la forme $(e_1, \dots, e_p, g_1, \dots, g_r)$.
- **b.** Montrer que $(e_1, \dots, e_p, f_1, \dots, f_q, g_1, \dots, g_r)$ est une base de E et conclure.

3. Une autre application.

Soit E un espace vectoriel de dimension 4 et soit E_1 et E_2 deux sous-espaces vectoriels de E de dimensions 3 tels que $E_1 \neq E_2$.

- **a.** Montrer que dim $(E_1 \cap E_2) \leq 2$.
- **b.** On suppose que $\dim(E_1 \cap E_2) = 1$. Montrer qu'il existe 5 vecteurs e, u_1, v_1, u_2, v_2 tels que (e, u_1, v_1) forme une base de E_1 et (e, u_2, v_2) forme une base de E_2 , puis que la famille (e, u_1, v_1, u_2, v_2) est une famille libre de E. En déduire que $\dim(E_1 \cap E_2) \neq 1$.
- **c.** Montrer de façon analogue que $\dim(E_1 \cap E_2) \neq 0$.
- **d.** En déduire la dimension de $E_1 \cap E_2$.

Remarque 1. Les exercices plus avancés de probas discrètes feront l'objet d'une autre quinzaine de colles.